1,425 research outputs found

    Human γδ T-Cells: from surface receptors to the therapy of high-risk leukemias

    Get PDF
    γδ T lymphocytes are potent effector cells, capable of efficiently killing tumor and leukemia cells. Their activation is mediated by γδ T-cell receptor (TCR) and by activating receptors shared with NK cells (e.g., NKG2D and DNAM-1). γδ T-cell triggering occurs upon interaction with specific ligands, including phosphoantigens (for Vγ9Vδ2 TCR), MICA-B and UL16 binding protein (for NKG2D), and PVR and Nectin-2 (for DNAM-1). They also respond to cytokines undergoing proliferation and release of cytokines/chemokines. Although at the genomic level γδ T-cells have the potential of an extraordinary TCR diversification, in tissues they display a restricted repertoire. Recent studies have identified various γδ TCR rearrangements following either hematopoietic stem cell transplantation (HSCT) or cytomegalovirus infection, accounting for their "adaptive" potential. In humans, peripheral blood γδ T-cells are primarily composed of Vγ9Vδ2 chains, while a minor proportion express Vδ1. They do not recognize antigens in the context of MHC molecules, thus bypassing tumor escape based on MHC class I downregulation. In view of their potent antileukemia activity and absence of any relevant graft-versus-host disease-inducing effect, γδ T-cells may play an important role in the successful clinical outcome of patients undergoing HLA-haploidentical HSCT depleted of TCR αβ T/CD19+ B lymphocytes to cure high-risk acute leukemias. In this setting, high numbers of both γδ T-cells (Vδ1 and Vδ2) and NK cells are infused together with CD34+ HSC and may contribute to rapid control of infections and leukemia relapse. Notably, zoledronic acid potentiates the cytolytic activity of γδ T-cells in vitro and its infusion in patients strongly promotes γδ T-cell differentiation and cytolytic activity; thus, treatment with this agent may contribute to further improve the patient clinical outcome after HLA-haploidentical HSCT depleted of TCR αβ T/CD19+ B lymphocytes

    El Villaurrutia de Reflejos

    Get PDF

    NK cells and other innate lymphoid cells in hematopoietic stem cell transplantation

    Get PDF
    Natural killer (NK) cells play a major role in the T-cell depleted haploidentical hematopoietic stem cell transplantation (haplo-HSCT) to cure high-risk leukemias. NK cells belong to the expanding family of innate lymphoid cells (ILCs). At variance with NK cells, the other ILC populations (ILC1/2/3) are non-cytolytic, while they secrete different patterns of cytokines. ILCs provide host defenses against viruses, bacteria, and parasites, drive lymphoid organogenesis, and contribute to tissue remodeling. In haplo-HSCT patients, the extensive T-cell depletion is required to prevent graft-versus-host disease (GvHD) but increases risks of developing a wide range of life-threatening infections. However, these patients may rely on innate defenses that are reconstituted more rapidly than the adaptive ones. In this context, ILCs may represent important players in the early phases following transplantation. They may contribute to tissue homeostasis/remodeling and lymphoid tissue reconstitution. While the reconstitution of NK cell repertoire and its role in haplo-HSCT have been largely investigated, little information is available on ILCs. Of note, CD34+ cells isolated from different sources of HSC may differentiate in vitro toward various ILC subsets. Moreover, cytokines released from leukemia blasts (e.g., IL-1β) may alter the proportions of NK cells and ILC3, suggesting the possibility that leukemia may skew the ILC repertoire. Further studies are required to define the timing of ILC development and their potential protective role after HSCT

    Exploiting Human NK Cells in Tumor Therapy

    Get PDF
    NK cells play an important role in the innate defenses against tumor growth and metastases. Human NK cell activation and function are regulated by an array of HLA class I-specific inhibitory receptors and activating receptors recognizing ligands expressed de novo on tumor or virus-infected cells. NK cells have been exploited in immunotherapy of cancer, including: (1) the in vivo infusion of IL-2 or IL-15, cytokines inducing activation and proliferation of NK cells that are frequently impaired in cancer patients. Nonetheless, the significant toxicity experienced, primarily with IL-2, limited their use except for combination therapies, e.g., IL-15 with checkpoint inhibitors; (2) the adoptive immunotherapy with cytokine-induced NK cells had effect on some melanoma metastases (lung), while other localizations were not affected; (3) a remarkable evolution of adoptive cell therapy is represented by NK cells engineered with CAR-targeting tumor antigens (CAR-NK). CAR-NK cells complement CAR-T cells as they do not cause GvHD and may be obtained from unrelated donors. Accordingly, CAR-NK cells may represent an \u201coff-the-shelf\u201d tool, readily available for effective tumor therapy; (4) the efficacy of adoptive cell therapy in cancer is also witnessed by the \u3b1\u3b2T cell- and B cell-depleted haploidentical HSC transplantation in which the infusion of donor NK cells and \u3b3\u3b4T cells, together with HSC, sharply reduces leukemia relapses and infections; (5) a true revolution in tumor therapy is the use of mAbs targeting checkpoint inhibitors including PD-1, CTLA-4, the HLA class I-specific KIR, and NKG2A. Since PD-1 is expressed not only by tumor-associated T cells but also by NK cells, its blocking might unleash NK cells playing a crucial effector role against HLA class I-deficient tumors that are undetectable by T cells

    Microenvironment in neuroblastoma: Isolation and characterization of tumor-derived mesenchymal stromal cells

    Get PDF
    Background: It has been proposed that mesenchymal stromal cells (MSCs) promote tumor progression by interacting with tumor cells and other stroma cells in the complex network of the tumor microenvironment. We characterized MSCs isolated and expanded from tumor tissues of pediatric patients diagnosed with neuroblastomas (NB-MSCs) to define interactions with the tumor microenvironment. Methods: Specimens were obtained from 7 pediatric patients diagnosed with neuroblastoma (NB). Morphology, immunophenotype, differentiation capacity, proliferative growth, expression of stemness and neural differentiation markers were evaluated. Moreover, the ability of cells to modulate the immune response, i.e. inhibition of phytohemagglutinin (PHA) activated peripheral blood mononuclear cells (PBMCs) and natural killer (NK) cytotoxic function, was examined. Gene expression profiles, known to be related to tumor cell stemness, Wnt pathway activation, epithelial-mesenchymal transition (EMT) and tumor metastasis were also evaluated. Healthy donor bone marrow-derived MSCs (BM-MSC) were employed as controls. Results: NB-MSCs presented the typical MSC morphology and phenotype. They showed a proliferative capacity superimposable to BM-MSCs. Stemness marker expression (Sox2, Nanog, Oct3/4) was comparable to BM-MSCs. NB-MSC in vitro osteogenic and chondrogenic differentiation was similar to BM-MSCs, but NB-MSCs lacked adipogenic differentiation capacity. NB-MSCs reached senescence phases at a median passage of P7 (range, P5-P13). NB-MSCs exhibited greater immunosuppressive capacity on activated T lymphocytes at a 1:2 (MSC: PBMC) ratio compared with BM-MSCs (p = 0.018). NK cytotoxic activity was not influenced by co-culture, either with BM-MSCs or NB-MSCs. Flow-cytometry cell cycle analysis showed that NB-MSCs had an increased number of cells in the G0-G1 phase compared to BM-MSCs. Transcriptomic profiling results indicated that NB-MSCs were enriched with EMT genes compared to BM-MSCs. Conclusions: We characterized the biological features, the immunomodulatory capacity and the gene expression profile of NB-MSCs. The NB-MSC gene expression profile and their functional properties suggest a potential role in promoting tumor escape, invasiveness and metastatic traits of NB cancer cells. A better understanding of the complex mechanisms underlying the interactions between NB cells and NB-derived MSCs should shed new light on potential novel therapeutic approaches

    Human Dendritic Cells Activate Resting Natural Killer (NK) Cells and Are Recognized via the NKp30 Receptor by Activated NK Cells

    Get PDF
    During the innate response to many inflammatory and infectious stimuli, dendritic cells (DCs) undergo a differentiation process termed maturation. Mature DCs activate antigen-specific naive T cells. Here we show that both immature and mature DCs activate resting human natural killer (NK) cells. Within 1 wk the NK cells increase two– to fourfold in numbers, start secreting interferon (IFN)-γ, and acquire cytolytic activity against the classical NK target LCL721.221. The DC-activated NK cells then kill immature DCs efficiently, even though the latter express substantial levels of major histocompatibility complex (MHC) class I. Similar results are seen with interleukin (IL)-2–activated NK cell lines and clones, i.e., these NK cells kill and secrete IFN-γ in response to immature DCs. Mature DCs are protected from activated NK lysis, but lysis takes place if the NK inhibitory signal is blocked by a human histocompatibility leukocyte antigen (HLA)-A,B,C–specific antibody. The NK activating signal mainly involves the NKp30 natural cytotoxicity receptor, and not the NKp46 or NKp44 receptor. However, both immature and mature DCs seem to use a NKp30 independent mechanism to act as potent stimulators for resting NK cells. We suggest that DCs are able to control directly the expansion of NK cells and that the lysis of immature DCs can regulate the afferent limb of innate and adaptive immunity

    Porous silicon-based aptasensors: The next generation of label-free devices for health monitoring

    Get PDF
    Aptamers are artificial nucleic acid ligands identified and obtained from combinatorial libraries of synthetic nucleic acids through the in vitro process SELEX (systematic evolution of ligands by exponential enrichment). Aptamers are able to bind an ample range of non-nucleic acid targets with great specificity and affinity. Devices based on aptamers as bio-recognition elements open up a new generation of biosensors called aptasensors. This review focuses on some recent achievements in the design of advanced label-free optical aptasensors using porous silicon (PSi) as a transducer surface for the detection of pathogenic microorganisms and diagnostic molecules with high sensitivity, reliability and low limit of detection (LoD)
    • …
    corecore